
Printing in Delphi:
Printing To Scale
by Xavier Pacheco

Last month I introduced you to
the TPrinter class and illus-

trated some simple techniques for
printing text, rich text and bitmaps.
This month I’m going to show you
how to print items to scale. This
entails writing code that is not
specific to a particular printing
device’s resolution. Additionally,
this enables you to write code that
uses units of measurement other
than pixels, such as inches and
centimetres, when using various
TPrinter methods.

Why Print To Scale
Consider if we were to write code
to draw a centimetre ruler on any
given canvas. There are basically
three ways to do this.

First, there’s the really hard and
absurd way: you place an actual
ruler against your computer
screen and change the parameters
to your drawing methods until the
measurements actually show up
right. I kid you not, I’ve seen people
do stuff like this. Well, the problem
is that although your code might
work fine (after hours of trial and
error), you’ll have to completely
re-set the parameters when draw-
ing your ruler to the printer be-
cause of the difference between
screen and printer resolutions.

A second way would be to first
determine how many pixels make
up a centimetre on a given device
context such as the computer
screen or the printer. This can
be determined by calling the
GetDeviceCaps Win32 API function.
I’ll show how to do this later. This
second method is fine, except that
you have to make all the conver-
sions from centimetres to pixels
when you use the TCanvas drawing
methods.

A third and simpler method is to
change the mapping mode of the
device context to which the draw-
ing will be performed. By changing

the mapping mode of the device
context, you can use more repre-
sentative units of measurement
with the drawing routines.

More About Mapping Modes
I need to sidestep for a moment to
give you some background infor-
mation on mapping modes. I won’t
go into complete detail of mapping
modes and coordinate systems, as
this warrants a whole article to
itself. Instead, I’ll let you know what
you need to do for this article.
You’ll find more detailed informa-
tion on mapping modes in Delphi’s
online help and in many third party
books [such as one by a certain
Xavier Pacheco and Steve Teixeira,
by any chance? Editor].

When performing any type of
graphic output, you normally spec-
ify a set of coordinates to indicate
the location on the device context
where drawing is to be performed.
These coordinates are based on a
pre-determined unit of measure-
ment. For screen drawing this unit
is, by default, pixels. By using dif-
ferent mapping modes for a device
context, you can use a different
unit of measurement such as
inches or centimetres for the
drawing coordinates.

Mapping modes allow you to de-
fine two attributes for the device

context to which you wish to do
your drawing routines. These at-
tributes are: the unit of measure-
ment for logical coordinates, and
the orientation of the X,Y axis for
the device context. For this article,
we’ll focus primarily on the units of
measurement.

Table 1 shows the different
mapping modes available to the
Win32 system with their respective
logical units of measure and
orientation.

Notice that each mapping mode
uses a different logical unit size. By
default, the mapping mode for all
device contexts is MM_TEXT. Notice
that the unit size for the MM_TEXT
mapping mode is 1 pixel and the
orientation is the same as how you
read text (left to right and down the
page). Depending on the drawing
operations you wish to perform, it
might be more convenient to use a
different mapping mode. Let’s say,
for example, that you want to draw
a 2x2 inch rectangle to your
printer. You’ll probably want to
use MM_LOENGLISH as your mapping
mode which will change the unit of
measure to 1/100th of an inch. You
would do this by first using the
SetMapMode API function. For exam-
ple, the following code changes the
mapping mode for the printer’s de-
vice context to MM_LOENGLISH and

Mapping Mode Logical Unit Size Orientation (X,Y)

MM_ANISOTROPIC arbitrary (x <> y) or (x = y) Right/Up

MM_HIENGLISH 0.001 inch Right/Up

MM_HIMETRIC 0.001 mm Right/Up

MM_ISOTROPIC arbitrary (x = y) Right/Up

MM_LOENGLISH 0.01 inch Right/Up

MM_LOMETRIC 0.1 mm Right/Up

MM_TEXT 1 pixel Right/Down

MM_TWIPS 1/1440 inch Right/Up

➤ Table 1: Mapping modes

July 1996 The Delphi Magazine 47

then restores the old mapping
mode after the drawing routines
have finished (see Listing 1).

There’s quite a bit to mapping
modes that can be discussed and
as I said that is not really the focus
of this article. With what I’ve
shown you, you’ll be able to see
how we can use mapping modes to
perform somewhat more complex
printing routines without having to
worry about printer resolution.
The following examples will
illustrate this further.

Printing The Ruler
Earlier I mentioned the possibility
of printing a centimetre based ruler
like that shown on the form in
Figure 1. By using mapping modes,
we can use the same routine used
to draw the ruler on the form to
draw the ruler to your printer.
Listing 2 is a unit that draws a ruler
to both the form’s Canvas and to the
printer’s Canvas by pressing a but-
ton. This example is also included
on this month’s disk.

In Listing 2, the PrintRuler proce-
dure is where all the work is done.
Notice that we use the SetMapMode
function as we illustrated earlier to
change the mapping mode for the

var
 OldMapMode: Integer;
begin
 OldMapMode := SetMapMode(Printer.Canvas.Handle, MM_LOENGLISH);
 try
 Printer.Canvas.Rectangle(10, -10, 210, -210);
 finally
 SetMapMode(Printer.Canvas.Handle, OldMapMode);
 end;
end;

➤ Listing 1

➤ Figure 1

unit Unit1;
interface
uses
 Windows, Messages, SysUtils, Classes, Graphics,
 Controls, Forms, Dialogs, ExtCtrls, StdCtrls;
type
 TForm1 = class(TForm)
 ToPrinter: TButton;
 procedure Form1Paint(Sender: TObject);
 procedure ToPrinterClick(Sender: TObject);
 private
 public
 end;
var Form1: TForm1;

implementation
uses Printers;
{$R *.DFM}

procedure PrintRuler(pCanvas: TCanvas);
const
 { In MM_LOMETRIC each unit is 1/100th of a centimetre.
 Therefore, we need a multiplier to be used with the
 drawing routines }
 UnitsInCent = 100;
var
 i: integer;
 OldMapMode: integer;
begin
 { First set the mapping mode to MM_LOMETRIC and then
 draw a bounding rectangle }
 OldMapMode := SetMapMode(pCanvas.Handle, MM_LOMETRIC);
 try
 pCanvas.Rectangle(0, 0, 1100, -200);
 { Draw each line to represent 1cm and 0.5cm }

 for i := 1 to 10 do begin
 pCanvas.MoveTo(i*UnitsInCent, -0);
 pCanvas.LineTo(i*UnitsInCent, -75);
 pCanvas.MoveTo(
 i*UnitsInCent-round(UnitsInCent / 2), -0);
 pCanvas.LineTo(
 i*UnitsInCent-round(UnitsInCent / 2), -50);
 pCanvas.TextOut(
 i*UnitsInCent-5, -80, IntToStr(i));
 end;
 finally
 { Restore the old mapping mode }
 SetMapMode(pCanvas.Handle, OldMapMode);
 end;
end;

procedure TForm1.Form1Paint(Sender: TObject);
{ This is Form1’s OnPaint event handler. It calls the
 PrintRuler procedure and passes the form’s Canvas as
 the parameter }
begin
 PrintRuler(Form1.Canvas);
end;

procedure TForm1.ToPrinterClick(Sender: TObject);
{ This is the OnClick method for the button. It calls
 the PrintRuler procedure but passes the printer’s
 Canvas as the parameter after setting up the printer
 for output. }
begin
 Printer.BeginDoc; // Initiate a print job
 PrintRuler(Printer.Canvas); // Print the ruler
 Printer.EndDoc; // Terminate the print job
end;
end.

➤ Listing 2

Canvas passed in as a parameter to
MM_LOMETRIC. With this mapping
mode, each unit of measure is
1/10th of a millimetre or 1/100th of
a centimetre. This accounts for the
UnitsInCent constant which I use as
a multiplier in the drawing rou-
tines. The drawing is made up of
MoveTo and LineTo method calls.
These calla are used just as before,
with the exception of one item.

You’ll notice the final parameters
for these methods are negated.
The reason for this is that by
changing the mapping mode for the
printer’s Canvas, we’ve also
changed the orientation. This
means that drawing doesn’t occur
from left to right and downwards as
with the MM_TEXT mapping mode.
Instead, drawing occurs from left
to right and upwards. So, you must

48 The Delphi Magazine Issue 11

negate the vertical coordinates in
your drawing routines for the out-
put to be displayed accordingly.

Printing A Calendar
This next example performs the
same type of technique but is
slightly more complex. It prints a
calendar based on the month for a
TCalendar component. Listing 3
shows the PRNTCAL.PAS unit
containing the PrintCalendar pro-
cedure which takes as parameters
a TCalendar component and a
printer orientation .

The PrintCalendar procedure
uses both the MM_LOENGLISH and
MM_TEXT mapping modes to perform
the calendar printing. Under the
MM_LOENGLISH mapping mode, the

specified unit of measure is used in
the drawing routines. These rou-
tines are primarily for drawing the
bounding rectangle and the boxes
to represent calendar days.

Under the MM_TEXT mapping
mode, I illustrate how to use the
GetDeviceCaps API function to re-
trieve information for the output
device. In particular, I retrieve the
number of pixels per inch along the
vertical and horizontal axis of the
printer device. This is how you
would perform your own transla-
tion of pixels and inches when not
using either the MM_LOENGLISH or
MM_HIENGLISH mapping modes. The
rest of the PrintCalendar proce-
dure’s functionality is explained in
the code’s comments. An example
of its usage is included on the disk
with this issue.

Conclusion
This concludes this month’s in-
stallment. Next month, I’ll use the
techniques I’ve already shown you
to print something that’s really
useful. I’ll show you how to print
master/detail reports by printing
invoices from the database tables
which ship with Delphi 2. I won’t be
using any report writers, but I’ll
show you how you can hard code
the printing routines yourself.

Xavier Pacheco is a Field Consult-
ing Engineer with Borland
International and co-author of
Delphi 2.0 Developer’s Guide. You
can reach him by email at
xpacheco@wpo.borland.com or
on Compuserve at 76711,666

unit Prntcal;
interface
uses
 Printers, Windows, Classes, Sysutils, Dialogs, Calendar;
const
 { In the MM_LOENGLISH mapping mode, each unit is
 1/100th of an inch. Therefore, this constant is used
 as a multiplier in this mapping mode. }
 UnitsInInch = 100;
 { Constant array holding strings for days of the week }
 Days: array[1..7] of string = (’Sunday’, ’Monday’,
 ’Tuesday’, ’Wednesday’, ’Thursday’, ’Friday’,
 ’Saturday’);
 { Constant array holding strings for months of year }
 Months: array[1..12] of string = (’January’,
 ’February’, ’March’, ’April’, ’May’, ’June’, ’July’,
 ’August’, ’September’, ’October’, ’November’,
 ’December’);
procedure PrintCalendar(Calendar: TCalendar;
pOrientation: TPrinterOrientation);

implementation

procedure PrintCalendar(Calendar: TCalendar;
 pOrientation: TPrinterOrientation);
var
 R: TRect;
 i: integer;
 LinePos: double;
 PixInInchX, PixInInchY: integer;
 TwnthOfInchX, TwnthOfInchY: integer;
 StrHeight: integer;
 X, Y, XPos, YPos: integer;
begin
 { Determine outer rectangle coordinates for calendar }
 R := Rect(1*UnitsInInch, 1*UnitsInInch, 8*UnitsInInch,
 Round(6.5*UnitsInInch));
 with Printer do begin
 Orientation := pOrientation; // Set orientation
 BeginDoc; // Start the print job
 { Change the mapping mode of the printer device
 context to MM_LOENGLISH }
 SetMapMode(Printer.Canvas.Handle, MM_LOENGLISH);
 { Draw the outer rectangle of the calendar to the
 printer’s Canvas }
 Canvas.Rectangle(R.Left, -R.Top, R.Right, -R.Bottom);
 { Now draw the horizontal and vertical lines inside
 of calendar which represent days of the month }
 for i := 1 to 5 do begin
 LinePos := 0.5 + i;
 Canvas.MoveTo(1*UnitsInInch,
 -Round(LinePos*UnitsInInch));
 Canvas.LineTo(8*UnitsInInch,
 -Round(LinePos*UnitsInInch));

 end;
 for i := 2 to 7 do begin
 Canvas.MoveTo(i*UnitsInInch, -1*UnitsInInch);
 Canvas.LineTo(i*UnitsInInch,
 -round(6.5*UnitsInInch));
 end;
 { Now we’re going to output text so set the mapping
 mode back to MM_TEXT }
 SetMapMode(Canvas.Handle, MM_TEXT);
 { In the MM_TEXT mapping mode, units are no longer
 represented as 1/100th of an inch as with the
 MM_LOENGLISH mapping mode. Instead, they are
 represented as pixels. Therefore, we must
 determine the number of pixels per inch along the
 device context’s horizontal and vertical axis by
 using the GetDeviceCaps function }
 PixInInchX :=
 GetDeviceCaps(Printer.Canvas.Handle, LOGPIXELSX);
 PixInInchY :=
 GetDeviceCaps(Printer.Canvas.Handle, LOGPIXELSY);
 { Calculate 1/20th of an inch along the X and Y axes
 to be used for positioning of text }
 TwnthOfInchX := PixInInchX div 20;
 TwnthOfInchY := PixInInchY div 20;
 { Draw the day titles in their appropriate block }
 for i := 1 to 7 do begin
 StrHeight := Canvas.TextHeight(Days[i]);
 Canvas.TextOut(i*PixInInchY+TwnthOfInchY,
 round(1.5*PixInInchX)-(StrHeight+TwnthOfInchX),
 Days[i]);
 end;
 { Now draw the day numbers where the block in which
 they belong }
 for Y := 0 to 4 do begin
 for X := 0 to 6 do begin
 XPos := round((X+1)*PixInInchX)+TwnthOfInchX;
 YPos := round((Y+1.5)*PixInInchY)+TwnthOfInchY;
 Canvas.TextOut(XPos, YPos,
 Calendar.CellText[X, Y+1]);
 end;
 end;
 { Draw the month/year string on the
 upper left side of the calendar }
 StrHeight :=
 Canvas.TextHeight(Months[Calendar.Month]);
 Canvas.TextOut(PixInInchX, PixInInchY-StrHeight,
 Months[Calendar.Month]+ ’ ’+
 IntToStr(Calendar.Year));
 EndDoc; // End the print job
 end;
end;

end.

➤ Listing 3

50 The Delphi Magazine Issue 11

	Why Print to Scale
	More About Mapping Modes
	Printing the Ruler
	Printing A Calendar
	Conclusion

